metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichloridobis{[(S)-N-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a']dinaphthalen-4-yl]dibenz[b,f]azepin-κP}palladium(II) deuterochloroform disolvate

Alexander Briceño^a* and Romano Dorta^b*

^aCentro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela, and ^bUniversidad Simón Bolívar, Departamento de Química, Caracas 1080-A, Venezuela Correspondence e-mail: abriceno@ivic.ve, rdorta@usb.ve

Received 1 May 2007; accepted 11 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.017 Å; some non-H atoms missing; disorder in main residue; R factor = 0.074; wR factor = 0.248; data-to-parameter ratio = 16.3.

The chiral bidentate P-olefin ligand (S)-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a']dinaphthalen-4-yl)dibenzo[b,f]azepin reacted with PdCl₂(NCCH₃)₂ to form the title compound, [PdCl₂(C₃₄H₂₂NO₂P)₂]·2CDCl₃. The Pd atom displays a distorted PdCl₂P₂ square-planar *cis* geometry. The title compound forms a three-dimensional hydrogen-bonded network from supramolecular right-handed helices assembled *via* C-H···Cl interactions, resulting in an array of channels along the *c* axis filled with deuterochloroform solvent molecules.

Related literature

For related literature, see: Deblon *et al.* (2003); Defieber *et al.* (2007); Maire *et al.* (2004); Van den Berg *et al.* (2000).

Experimental

Crystal data

$$\begin{split} & [\mathrm{PdCl}_2(\mathrm{C}_{34}\mathrm{H}_{22}\mathrm{NO}_2\mathrm{P})_2]\cdot 2\mathrm{CDCl}_3 \\ & M_r = 1431.03 \\ & \mathrm{Tetragonal}, \ P4_1 \\ & a = 19.866 \ (2) \ \mathrm{\AA} \\ & c = 17.497 \ (2) \ \mathrm{\AA} \\ & V = 6905.2 \ (13) \ \mathrm{\AA}^3 \end{split}$$

Data collection

Rigaku AFC-7S Mercury	79958 measured reflections
diffractometer	14408 independent reflections
Absorption correction: multi-scan	9124 reflections with $I > 2\sigma(I)$
Jacobson (1998)	$R_{\rm int} = 0.063$
$T_{\min} = 0.802, \ T_{\max} = 0.891$	
(expected range = 0.761 - 0.845)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	H-atom parameters constrained
$wR(F^2) = 0.248$	$\Delta \rho_{\rm max} = 1.06 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.72 \text{ e } \text{\AA}^{-3}$
14408 reflections	Absolute structure: Flack (1983),
886 parameters	5079 Friedel pairs
593 restraints	Flack parameter: 0.02 (4)

Z = 4

Mo $K\alpha$ radiation

 $0.42 \times 0.30 \times 0.25$ mm

 $\mu = 0.67 \text{ mm}^{-1}$

T = 293 (2) K

Table 1 Selected bond lengths (Å).

Pd1-P2	2.232 (2)	Pd1-Cl2	2.334 (2)
Pd1-P1	2.232 (2)	Pd1-Cl1	2.343 (2)

Table 2

H	lyd	rogen-	bond	geometry	(A,	°)	۱.
---	-----	--------	------	----------	-----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2S - H2S \cdot \cdot \cdot Cl1^i$	0.97	2.47	3.358 (10)	151
C27-H27···Cl2 ⁱⁱ	0.93	2.82	3.741 (12)	172
C14-H14···Cl2 ⁱⁱ	0.93	2.84	3.613 (10)	142
	0.95	2.04	5.015 (10)	142

Symmetry codes: (i) -y + 1, x, $z - \frac{3}{4}$; (ii) -y + 1, x, $z + \frac{1}{4}$.

Data collection: *CrystalClear* (Rigaku/MSC Inc., 2000); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC Inc., 2004); program(s) used to solve structure: *SHELXTL-NT* (Bruker, 1998); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *SHELXTL-NT* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL-NT NT* and *PLATON* (Spek, 2003).

This work was made possible thanks to FONACIT-MCT (projects S1–2001000851 and LAB-199700821).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2403).

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.0h. Crystal Impact, Gbr, Bonn, Germany.
- Bruker (1998). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wiscosin, USA.
- Deblon, S., Grützmacher, H., Maire, P. & Schönberger, H. (2003). Patent No. WO 03/048175 A1.

- Defieber, Ch., Ariger, M. A., Moriel, P. & Carreira, E. M. (2007). Angew. Chem. Int. Ed. 47, 3139-3143.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Maire, P., Deblon, S., Breher, F., Geier, J., Böhler, C., Rüegger, H., Schönberger, H. & Grützmacher, H. (2004). *Chem. Eur. J.* **10**, 4198– 4205.
- Rigaku/MSC Inc. (2000). CrystalClear. Version 1.3.6. MSC Inc., The Woodlands, TX, USA, and Rigaku, Tokyo, Japan.
- Rigaku/MSC Inc. (2004). CrystalStructure. Version 3.6.0. MSC Inc., The Woodlands, TX, USA, and Rigaku, Tokyo, Japan.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Van den Berg, M., Minnaard, A. J., Schudde, E. P., van Esch, J., de Vries, A. H. M., de Vries, J. G. & Feringa, B. L. (2000). J. Am. Chem. Soc. 122, 11539– 11540.

Acta Cryst. (2007). E63, m1718-m1719 [doi:10.1107/S1600536807023173]

cis-Dichloridobis{[(*S*)-*N*-(3,5-dioxa-4-phosphacyclohepta[2,1-*a*;3,4-*a*']dinaphthalen-4-yl]dibenz[*b*,*f*]azepin-*KP*}palladium(II) deuterochloroform disolvate

A. Briceño and R. Dorta

Comment

P-olefin ligands constitute a rather new entry in the development of efficient bidentate ligand systems for organometallic reactivity and catalysis. Grützmacher *et al.* developed a new class of P-olefin ligands based on the dibenzo[b,f]cycloheptene and dibenzo[b,f]azepin motifs, several of them chiral (Maire *et al.*, 2004). On the other hand, de Vries and Feringa (Van den Berg *et al.*, 2000) showed that chiral phosphoramidites are highly versatile monodentate ligands and so we anticipated that the dibenzo[b,f]azepin molecule could be readily used to form new chiral phosphoramidite-olefin ligands such as (I). Ligand (I) has very recently been disclosed to be an excellent ligand for the enantioselective formation of allylic amines from allylic alcohols (Defieber *et al.*, 2007).

Here, we report the crystal structure of a Pd(II) complex bearing the chiral ligand (I). The asymmetric unit of (II) consists of one metal complex molecule and three independent deuterocloroform molecules (two of which are half occupied). The Pd atom displays a distorted square planar environment, in which two ligands (I) are coordinated through their P atoms in a monodentade fashion and the remaining coordination sites are occupied by two chloride anions. The ligands are located in a *cis* configuration around the metal centre [P2—Pd1—P1 = 94.59 (7)°; Cl2—Pd—Cl1 = 89.24 (9)°]. The metal complex adopts pseudo-*C*2 symmetry about the Pd atom (Fig. 1). The naphtyl groups are twisted in both molecules as indicated by torsion angles of 50.39 (2)° for C1—C10—C11—C12 and 52.23 (2)° for C35—C44—C45—C46.

The crystal structure of (II) consists of a three-dimensional-hydrogen bonded network, which is self assembled *via* C—H^{...} π and C—H^{...}Cl interaction [C27^{i...}CL2: 3.741 (12) Å and C14^{i...}Cl2: 3.613 (10) Å; i= x, 1 - y, 1/4 + z]. The coordinated chloride (Cl2) ion causes the self-assembly of the metal complex to generate a right-handed helical arrangement along the fourfold screw axis (4₁). Neighbouring helices are assembled by weak van der Waals interactions to afford a 3-D hydrogenbonded assembly. This organization yields a framework with one-dimensional channels running along the *c* axis, where the deuterochloroform molecules are allocated, and which are sustained into the channels by C—H^{...}Cl hydrogen bonding to the chloride ligands of the complex [C11^{...}C2Sⁱⁱ: 3.358 Å; ii= x, 1 - y, -3/4 + z] (Fig 2).

Experimental

Two equivalents of ligand (I) reacted cleanly with $PdCl_2(NCCH_3)_2$ in toluene/acetonitrile solution to afford the title compound (II) in yields of over 90%. Single crystals of (II) were grown from a CDCl₃ solution layered with Et₂O. The crystals are unstable outside their mother-liquor, and a single-crystal was sealed in a Lindemann capillary for intensity collection, together with its mother-liquor.

Refinement

All H atoms bound to carbon were included in calculated positions (C—H = 0.93-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2Ueq(C)$.

The dibenzoazepine framgment containing the N2 atom was found disordered over two positions. The occupational parameters were determined to be 0.70 and 0.30. The non-hydrogen atoms of the six-menbered ring of this frament were refined with the atoms being forced into planarity. The deuterochloroform molecules were also found disordered. The disorder of the C2S molecule was modelled by two sets of chlorine positions with occupancies 0.60 and 0.40. The best model for the remaining solvent molecules was obtained by free refinement of its occupation factors, giving a partial occupation of approximatly 0.5 for both molecules. These occupations were fixed during the final refinements. All C—Cl distances were restrained to similar lenghts. The absolute structure was assigned from the known configuration of the starting binaphtol reagent used in the synthesis of ligand (I) and confirmed by refinement of the Flack (1983) absolute structure parameter.

Figures

Fig. 1. Molecular structure of the main molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. View of the three-dimensional hydrogen bonded network observed in the crystal structure of (II), showing one-dimensional channels along the *c* axis.

Fig. 3. Reaction scheme.

Dichlorido- cis-bis[{(S)-(3,5-dioxa-4-phosphacyclohepta[2,1 – a;3,4–a']dinaphthalen-4-yl)dibenz[b,f]azepin}-kP]palladium(II) deuterochloroform disolvate

Crystal data	
[PdCl ₂ (C ₃₄ H ₂₂ NO ₂ P) ₂].2CDCl ₃	Z = 4
$M_r = 1431.03$	$F_{000} = 2896$
Tetragonal, P4 ₁	$D_{\rm x} = 1.377 \ {\rm Mg \ m}^{-3}$
Hall symbol: P 4w	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
<i>a</i> = 19.866 (2) Å	Cell parameters from 2378 reflections

b = 19.866 (2) Å c = 17.497 (2) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ $V = 6905.2 (13) \text{ Å}^{3}$

Data collection

Rigaku AFC7S Mercury diffractometer	14408 independent reflections
Radiation source: normal-focus sealed tube	9124 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.5^{\circ}$
ω scans	$h = -24 \rightarrow 21$
Absorption correction: Multi-scan Jacobson (1998)	$k = -23 \rightarrow 23$
$T_{\min} = 0.802, \ T_{\max} = 0.891$	$l = -22 \rightarrow 22$
79958 measured reflections	

 $\theta = 2.0-27.6^{\circ}$

 $\mu = 0.67 \text{ mm}^{-1}$ T = 293 (2) K

Prism, yellow

 $0.42\times0.30\times0.25~mm$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.1446P)^2 + 3.0373P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.248$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$
14408 reflections	$\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$
886 parameters	Extinction correction: none
593 restraints	Absolute structure: Flack (1983), with 5079 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.02 (4)
~	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Pd1	0.46461 (3)	0.15920 (3)	0.07387 (5)	0.05517 (19)	
P2	0.51845 (11)	0.13326 (10)	0.18186 (12)	0.0550 (5)	
P1	0.54240 (10)	0.23245 (9)	0.03450 (12)	0.0515 (4)	
Cl2	0.39914 (12)	0.18825 (12)	-0.03184 (14)	0.0767 (6)	
Cl1	0.38606 (14)	0.07551 (13)	0.10470 (16)	0.0870 (8)	
01	0.5486(3)	0.2454 (3)	-0.0559 (3)	0.0584 (13)	
02	0.6150 (2)	0.2024 (2)	0.0547 (3)	0.0511 (12)	
O4	0.5558 (3)	0.1988 (3)	0.2163 (3)	0.0591 (13)	
N1	0.5325 (3)	0.3100 (3)	0.0626 (4)	0.0546 (15)	
O3	0.4720 (3)	0.1113 (3)	0.2535 (3)	0.0614 (13)	
N2	0.5686 (4)	0.0687 (3)	0.1775 (4)	0.0601 (16)	
C1	0.5795 (5)	0.2007 (4)	-0.1058 (4)	0.060 (2)	
C2	0.5371 (5)	0.1683 (5)	-0.1609 (5)	0.073 (2)	
H2A	0.4910	0.1760	-0.1613	0.087*	
C3	0.5653 (6)	0.1268 (5)	-0.2116 (5)	0.077 (3)	
Н3	0.5385	0.1092	-0.2503	0.093*	
C4	0.6333 (6)	0.1087 (5)	-0.2095 (5)	0.075 (2)	
C5	0.6571 (8)	0.0573 (6)	-0.2551 (7)	0.094 (3)	
Н5	0.6287	0.0364	-0.2899	0.112*	
C6	0.7220 (10)	0.0376 (8)	-0.2491 (8)	0.118 (5)	
H6	0.7376	0.0028	-0.2800	0.141*	
C7	0.7696 (7)	0.0704 (6)	-0.1936 (7)	0.101 (4)	
H7	0.8145	0.0573	-0.1908	0.121*	
C8	0.7454 (6)	0.1190 (5)	-0.1486 (6)	0.081 (3)	
H8	0.7739	0.1397	-0.1136	0.098*	
C9	0.6768 (5)	0.1399 (4)	-0.1532 (5)	0.063 (2)	
C10	0.6474 (4)	0.1920 (4)	-0.1040 (4)	0.0544 (18)	
C11	0.6907 (4)	0.2292 (4)	-0.0508 (4)	0.0519 (17)	
C12	0.6748 (4)	0.2308 (4)	0.0278 (5)	0.0525 (17)	
C13	0.7195 (4)	0.2582 (4)	0.0825 (5)	0.0581 (18)	
H13	0.7101	0.2547	0.1344	0.070*	
C14	0.7761 (4)	0.2895 (4)	0.0584 (6)	0.068 (2)	
H14	0.8055	0.3067	0.0949	0.082*	
C15	0.7926 (4)	0.2973 (4)	-0.0205 (5)	0.0586 (19)	
C16	0.8480 (5)	0.3376 (6)	-0.0460 (7)	0.088 (3)	
H16	0.8754	0.3586	-0.0101	0.105*	
C17	0.8612 (5)	0.3456 (6)	-0.1210 (7)	0.089 (3)	
H17	0.8984	0.3702	-0.1372	0.106*	
C18	0.8180 (6)	0.3163 (6)	-0.1731 (7)	0.093 (3)	
H18	0.8261	0.3228	-0.2249	0.112*	
C19	0.7646 (5)	0.2785 (5)	-0.1523 (5)	0.077 (3)	
H19	0.7380	0.2589	-0.1898	0.092*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.7485 (4)	0.2680 (4)	-0.0745 (5)	0.0599 (19)
C21	0.5706 (4)	0.3648 (4)	0.0274 (6)	0.062 (2)
C22	0.5534 (5)	0.3884 (5)	-0.0429 (6)	0.074 (2)
H22	0.5168	0.3706	-0.0690	0.089*
C23	0.5926 (7)	0.4409 (6)	-0.0759 (8)	0.103 (4)
H23	0.5805	0.4615	-0.1216	0.123*
C24	0.6528 (7)	0.4604 (7)	-0.0339 (9)	0.109 (4)
H24	0.6848	0.4874	-0.0577	0.131*
C25	0.6625 (7)	0.4415 (7)	0.0337 (9)	0.103 (4)
H25	0.6987	0.4599	0.0602	0.124*
C26	0.6224 (5)	0.3950 (4)	0.0710 (8)	0.083 (3)
C27	0.6332 (6)	0.3784 (5)	0.1545 (8)	0.093 (4)
H27	0.6774	0.3786	0.1717	0.111*
C28	0.5873 (7)	0.3639 (5)	0.2047 (7)	0.083 (3)
H28	0.6020	0.3570	0.2545	0.100*
C29	0.5158 (5)	0.3573 (4)	0.1913 (6)	0.071 (2)
C30	0.4712 (8)	0.3774 (5)	0.2496 (6)	0.096 (4)
H30	0.4879	0.3960	0.2945	0.115*
C31	0.4029 (8)	0.3694 (6)	0.2403 (8)	0.100 (4)
H31	0.3739	0.3837	0.2788	0.119*
C32	0.3770 (5)	0.3413 (6)	0.1763 (6)	0.082 (3)
H32	0.3308	0.3351	0.1714	0.099*
C33	0.4200 (5)	0.3218 (5)	0.1183 (5)	0.070(2)
H33	0.4021	0.3032	0.0739	0.083*
C34	0.4880 (4)	0.3293 (4)	0.1245 (5)	0.0581 (18)
C35	0.4326 (5)	0.1589 (5)	0.2915 (5)	0.071 (2)
C36	0 3637 (6)	0 1578 (6)	0 2814 (7)	0.086(3)
H36	0 3439	0.1278	0.2473	0 104*
C37	0.3255 (6)	0.2014 (6)	0.3222 (9)	0.099 (3)
H37	0.2788	0.1995	0.3188	0.119*
C38	0 3572 (9)	0 2514 (7)	0 3714 (7)	0 110 (5)
C39	0.3148(10)	0.3015 (9)	0.371(7)	0.132 (5)
H39	0.2687	0 3015	0 3966	0.152 (0)
C40	0.3424(10)	0 3484 (8)	0.4520 (10)	0.127 (5)
H40	0.3150	0 3792	0.4772	0.152*
C41	0.4097 (9)	0.3507 (8)	0.4613 (8)	0.118 (4)
H41	0.4279	0.3842	0.4920	0.142*
C42	0.4522(8)	0.3057 (7)	0 4274 (8)	0.108(4)
H42	0.4985	0.3100	0.4341	0.130*
C43	0.4255 (8)	0.2510(6)	0 3809 (6)	0.091 (3)
C44	0.4646 (6)	0.2013(4)	0.3422(5)	0.077(3)
C45	0.1010(0) 0.5384(7)	0.1966 (5)	0.3122(6)	0.077(3)
C46	0.5501(7)	0.1984(4)	0.3330(0) 0.2924(5)	0.001(3)
C47	0.6528 (6)	0.1901(1) 0.2003(5)	0.2921(3)	0.070(2)
H47	0.6793	0.2005 (0)	0.2535	0.103*
C48	0.6815 (7)	0.1945 (7)	0.3696 (8)	0.105(4)
U 10 H48	0.7278	0.1945 (7)	0.3756	0.128*
C49	0.6400 (7)	0 1831 (6)	0.3730	0.120
C 50	0.6698 (11)	0 1701 (9)	0.1341(0) 0.5084(11)	0.101(3) 0.142(5)
0.50	0.0070 (11)	0.1701(7)	0.000+(11)	0.172 (3)

H50	0.7160	0.1681	0.5172	0.171*	
C51	0.6216 (11)	0.1611 (10)	0.5647 (12)	0.149 (6)	
H51	0.6392	0.1514	0.6127	0.178*	
C52	0.5558 (10)	0.1637 (8)	0.5626 (11)	0.136 (5)	
H52	0.5295	0.1564	0.6058	0.163*	
C53	0.5293 (9)	0.1772 (7)	0.4950 (6)	0.115 (5)	
H53	0.4828	0.1806	0.4904	0.138*	
C54	0.5703 (8)	0.1869 (5)	0.4288 (6)	0.096 (4)	
C55	0.5962 (5)	0.0410 (5)	0.1050 (4)	0.058 (2)	0.695 (16)
C56	0.5506 (5)	0.0098 (5)	0.0564 (5)	0.065 (3)	0.695 (16)
H56	0.5062	0.0035	0.0718	0.078*	0.695 (16)
C57	0.5713 (6)	-0.0121 (5)	-0.0154 (5)	0.077 (3)	0.695 (16)
H57	0.5407	-0.0330	-0.0479	0.092*	0.695 (16)
C58	0.6376 (7)	-0.0028 (6)	-0.0384 (4)	0.085 (4)	0.695 (16)
H58	0.6514	-0.0174	-0.0864	0.102*	0.695 (16)
C59	0.6832 (6)	0.0285 (6)	0.0103 (5)	0.077 (3)	0.695 (16)
H59	0.7276	0.0347	-0.0051	0.092*	0.695 (16)
C60	0.6625 (5)	0.0503 (5)	0.0820 (5)	0.066 (3)	0.695 (16)
C61	0.7128 (8)	0.0813 (8)	0.1411 (12)	0.074 (3)	0.695 (16)
H61	0.7465	0.1079	0.1198	0.089*	0.695 (16)
C62	0.7154 (9)	0.0763 (9)	0.2117 (11)	0.077 (3)	0.695 (16)
H62	0.7501	0.0984	0.2373	0.092*	0.695 (16)
C63	0.6679 (10)	0.0385 (9)	0.2562 (9)	0.067 (3)	0.695 (16)
C64	0.6964 (7)	0.0089 (8)	0.3205 (10)	0.080 (3)	0.695 (16)
H64	0.7424	0.0127	0.3293	0.096*	0.695 (16)
C65	0.6562 (7)	-0.0265 (7)	0.3716 (8)	0.083 (3)	0.695 (16)
H65	0.6753	-0.0463	0.4146	0.099*	0.695 (16)
C66	0.5874 (7)	-0.0322 (7)	0.3585 (9)	0.074 (3)	0.695 (16)
H66	0.5605	-0.0559	0.3927	0.088*	0.695 (16)
C67	0.5589 (7)	-0.0026 (8)	0.2942 (11)	0.066 (3)	0.695 (16)
H67	0.5129	-0.0064	0.2854	0.079*	0.695 (16)
C68	0.5991 (10)	0.0327 (10)	0.2431 (9)	0.061 (3)	0.695 (16)
C55A	0.5723 (12)	0.0395 (13)	0.1022 (11)	0.062 (4)	0.305 (16)
C56A	0.5214 (11)	0.0042 (13)	0.0653 (13)	0.059 (4)	0.305 (16)
H56A	0.4794	-0.0002	0.0881	0.071*	0.305 (16)
C57A	0.5334 (14)	-0.0246 (12)	-0.0059 (14)	0.077 (5)	0.305 (16)
H57A	0.4994	-0.0483	-0.0306	0.092*	0.305 (16)
C58A	0.5962 (16)	-0.0181 (14)	-0.0400(12)	0.084 (5)	0.305 (16)
H58A	0.6042	-0.0373	-0.0876	0.100*	0.305 (16)
C59A	0.6471 (13)	0.0173 (14)	-0.0031 (14)	0.078 (4)	0.305 (16)
H59A	0.6891	0.0217	-0.0260	0.094*	0.305 (16)
C60A	0.6351 (11)	0.0461 (13)	0.0680 (14)	0.067 (4)	0.305 (16)
C61A	0.6951 (19)	0.0703 (18)	0.109 (2)	0.069 (4)	0.305 (16)
H61A	0.7288	0.0923	0.0816	0.083*	0.305 (16)
C62A	0.7034 (19)	0.060 (2)	0.1941 (18)	0.073 (4)	0.305 (16)
H62A	0.7489	0.0623	0.2062	0.087*	0.305 (16)
C63A	0.664 (2)	0.048 (2)	0.266 (2)	0.069 (4)	0.305 (16)
C64A	0.6841 (15)	0.020 (2)	0.335 (2)	0.074 (4)	0.305 (16)
H64A	0.7288	0.0238	0.3506	0.089*	0.305 (16)
					(-)

C65A	0.6376 (16)	-0.0119 (17)	0.3818 (18)	0.074 (5)	0.305 (16)
H65A	0.6511	-0.0301	0.4283	0.088*	0.305 (16)
C66A	0.5707 (15)	-0.0169 (17)	0.359 (2)	0.067 (5)	0.305 (16)
H66A	0.5396	-0.0385	0.3900	0.080*	0.305 (16)
C67A	0.5505 (19)	0.010(2)	0.289 (3)	0.064 (4)	0.305 (16)
H67A	0.5058	0.0070	0.2741	0.077*	0.305 (16)
C68A	0.597 (3)	0.043 (2)	0.2429 (19)	0.060 (4)	0.305 (16)
C2S	0.9015 (4)	0.2278 (5)	-0.7074 (4)	0.141 (6)	
H2S	0.9000	0.2771	-0.7069	0.169*	
Cl6	0.8807 (9)	0.1984 (9)	-0.6167 (4)	0.205 (8)	0.60
C17	0.9823 (4)	0.2023 (10)	-0.7313 (11)	0.182 (7)	0.60
C18	0.8439 (6)	0.1985 (9)	-0.7743 (6)	0.171 (6)	0.60
Cl6A	0.8781 (16)	0.1686 (13)	-0.6377 (10)	0.213 (10)	0.40
Cl7A	0.9894 (4)	0.2278 (15)	-0.7147 (16)	0.168 (9)	0.40
Cl8A	0.8676 (13)	0.2024 (16)	-0.7954 (8)	0.195 (10)	0.40
C3S	0.9472 (8)	0.1616 (12)	-0.0093 (10)	0.178 (16)*	0.50
H3SA	0.9545	0.2078	0.0085	0.214*	0.50
C19	0.9319 (8)	0.1577 (8)	-0.1072 (9)	0.203 (5)*	0.50
C110	1.0123 (7)	0.1075 (7)	0.0173 (9)	0.191 (5)*	0.50
Cl11	0.8718 (8)	0.1281 (8)	0.0235 (9)	0.202 (5)*	0.50
C1S	0.8771 (9)	0.1196 (7)	-0.3571 (9)	0.174 (16)*	0.50
H1S	0.8296	0.1086	-0.3486	0.209*	0.50
C13	0.9285 (11)	0.0522 (7)	-0.3290 (10)	0.263 (8)*	0.50
Cl4	0.8997 (9)	0.1906 (7)	-0.3039 (8)	0.226 (6)*	0.50
C15	0.8915 (10)	0.1362 (8)	-0.4541 (7)	0.255 (8)*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0611 (4)	0.0510(3)	0.0534 (3)	-0.0077 (2)	-0.0145 (3)	0.0077 (3)
P2	0.0676 (12)	0.0490 (10)	0.0485 (10)	-0.0017 (8)	-0.0124 (9)	0.0068 (8)
P1	0.0576 (11)	0.0479 (10)	0.0491 (10)	-0.0041 (8)	-0.0124 (8)	0.0043 (8)
Cl2	0.0803 (14)	0.0791 (14)	0.0707 (14)	-0.0126 (11)	-0.0330 (11)	0.0156 (11)
Cl1	0.0904 (16)	0.0877 (16)	0.0831 (16)	-0.0376 (13)	-0.0170 (13)	0.0199 (13)
01	0.067 (3)	0.057 (3)	0.052 (3)	0.002 (2)	-0.019 (3)	0.002 (2)
O2	0.058 (3)	0.048 (3)	0.047 (3)	0.002 (2)	-0.007 (2)	0.006 (2)
O4	0.080 (4)	0.050 (3)	0.048 (3)	0.002 (2)	-0.019 (3)	0.003 (2)
N1	0.052 (3)	0.046 (3)	0.065 (4)	-0.008 (2)	-0.007 (3)	0.001 (3)
O3	0.075 (4)	0.056 (3)	0.053 (3)	0.007 (2)	-0.004 (3)	0.014 (2)
N2	0.075 (4)	0.053 (4)	0.053 (4)	0.001 (3)	-0.007 (3)	0.009 (3)
C1	0.082 (6)	0.059 (4)	0.038 (4)	-0.005 (4)	-0.017 (4)	0.003 (3)
C2	0.094 (6)	0.077 (6)	0.047 (5)	-0.026 (5)	-0.014 (4)	0.006 (4)
C3	0.115 (8)	0.070 (6)	0.047 (5)	-0.027 (5)	-0.007 (5)	-0.016 (4)
C4	0.105 (8)	0.080 (6)	0.039 (4)	-0.017 (5)	0.001 (5)	-0.001 (4)
C5	0.128 (10)	0.092 (7)	0.061 (6)	-0.018 (7)	0.006 (6)	-0.019 (6)
C6	0.171 (15)	0.111 (10)	0.071 (7)	-0.005 (9)	0.006 (9)	-0.032 (7)
C7	0.131 (9)	0.097 (8)	0.074 (7)	0.021 (7)	0.027 (7)	-0.020(6)
C8	0.103 (8)	0.081 (6)	0.060 (5)	0.008 (5)	0.005 (5)	-0.010 (5)

C9	0.079 (5)	0.061 (5)	0.051 (5)	-0.003 (4)	-0.004 (4)	-0.007 (3)
C10	0.072 (5)	0.059 (4)	0.032 (3)	-0.005 (4)	-0.007 (3)	0.002 (3)
C11	0.062 (4)	0.050 (4)	0.044 (4)	-0.009 (3)	-0.009 (3)	0.001 (3)
C12	0.048 (4)	0.050 (4)	0.059 (5)	0.004 (3)	-0.012 (3)	0.002 (3)
C13	0.067 (5)	0.055 (4)	0.053 (4)	0.006 (3)	-0.013 (4)	-0.014 (4)
C14	0.064 (5)	0.058 (4)	0.083 (7)	-0.003 (4)	-0.016 (4)	-0.017 (4)
C15	0.051 (4)	0.057 (4)	0.067 (5)	-0.005 (3)	-0.011 (4)	-0.007 (4)
C16	0.060 (5)	0.101 (8)	0.102 (9)	-0.018 (5)	-0.016 (5)	-0.015 (6)
C17	0.071 (6)	0.117 (8)	0.077 (7)	-0.032 (6)	-0.006 (5)	0.014 (6)
C18	0.101 (7)	0.111 (8)	0.068 (6)	-0.028 (6)	0.007 (6)	0.014 (6)
C19	0.079 (6)	0.095 (7)	0.056 (5)	-0.018 (5)	0.000 (4)	0.006 (4)
C20	0.061 (5)	0.056 (4)	0.063 (5)	-0.008 (3)	0.000 (4)	0.003 (4)
C21	0.057 (5)	0.043 (4)	0.085 (6)	0.001 (3)	0.000 (4)	-0.006 (4)
C22	0.080 (6)	0.065 (5)	0.078 (6)	0.004 (4)	0.014 (5)	0.011 (5)
C23	0.125 (7)	0.093 (6)	0.091 (6)	0.008 (5)	0.026 (5)	0.012 (5)
C24	0.110 (6)	0.092 (6)	0.125 (7)	-0.021 (5)	0.038 (6)	-0.010 (6)
C25	0.095 (6)	0.097 (6)	0.117 (7)	-0.023 (5)	0.016 (5)	-0.020(5)
C26	0.063 (5)	0.054 (4)	0.131 (9)	-0.014 (4)	0.020 (6)	-0.022 (6)
C27	0.081 (7)	0.077 (6)	0.121 (10)	0.008 (5)	-0.048 (7)	-0.042 (7)
C28	0.105 (8)	0.071 (6)	0.074 (6)	-0.004 (5)	-0.007 (6)	-0.018 (5)
C29	0.094 (7)	0.049 (4)	0.070 (6)	-0.001 (4)	-0.017 (5)	0.000 (4)
C30	0.165 (13)	0.068 (6)	0.054 (5)	0.012 (7)	0.011 (7)	-0.003 (4)
C31	0.125 (11)	0.091 (8)	0.082 (8)	0.011 (7)	0.026 (8)	0.016 (6)
C32	0.069 (6)	0.101 (7)	0.076 (7)	0.010 (5)	0.005 (5)	0.019 (6)
C33	0.069 (5)	0.082 (6)	0.058 (5)	0.009 (4)	-0.006 (4)	0.011 (4)
C34	0.060 (5)	0.061 (5)	0.053 (4)	0.002 (3)	0.000 (4)	0.006 (4)
C35	0.098 (7)	0.067 (5)	0.050 (5)	0.008 (5)	0.004 (5)	0.014 (4)
C36	0.089 (7)	0.089 (7)	0.081 (7)	0.001 (5)	-0.007 (6)	0.014 (6)
C37	0.083 (7)	0.107 (8)	0.109 (9)	0.011 (6)	0.021 (7)	-0.002(8)
C38	0.161 (13)	0.101 (9)	0.067 (7)	0.045 (9)	0.031 (8)	0.016 (6)
C39	0.146 (8)	0.123 (7)	0.127 (8)	0.021 (6)	0.010 (6)	0.016 (6)
C40	0.150 (8)	0.115 (7)	0.114 (7)	0.009 (6)	0.025 (6)	-0.004(6)
C41	0.157 (8)	0.106 (7)	0.091 (6)	0.000 (6)	0.010 (6)	-0.011(5)
C42	0.149 (7)	0.097 (6)	0.079 (6)	0.003 (6)	0.006 (6)	0.012 (5)
C43	0.136 (11)	0.078 (7)	0.060 (6)	0.007 (6)	-0.003(6)	0.014 (5)
C44	0 113 (8)	0.052(5)	0.065 (6)	0.001 (4)	-0.001(5)	0.011 (4)
C45	0.133 (9)	0.052(5)	0.064 (6)	0.001(1)	-0.021(6)	0.011(1)
C46	0.100 (7)	0.057(5)	0.054(5)	0.012(3)	-0.015(5)	-0.008(4)
C47	0.100(7)	0.077 (6)	0.096 (8)	0.005(1)	-0.034(6)	-0.010(5)
C48	0 104 (9)	0.119(10)	0.097 (9)	-0.013(7)	-0.053(8)	0.000(7)
C49	0.116 (6)	0.101 (6)	0.086 (6)	-0.015(5)	-0.040(6)	0.000(7)
C50	0.146 (8)	0.143 (8)	0.139 (8)	-0.019(7)	-0.031(7)	-0.006(7)
C51	0.166 (9)	0.154 (8)	0.126 (8)	-0.013(7)	-0.013(7)	-0.002(7)
C52	0.156 (8)	0.137 (8)	0.116 (8)	-0.019 (6)	-0.015(7)	0.008 (6)
C53	0 193 (14)	0 110 (9)	0.040 (5)	-0.018(9)	-0.010(7)	0.017 (5)
C54	0 167 (12)	0.061 (5)	0.059(6)	-0.026(6)	-0.029(7)	0.005(4)
C55	0.069 (5)	0.045 (5)	0.059 (5)	0.015 (5)	-0.006(4)	0.003(4)
C56	0.077 (6)	0.047(5)	0.072 (6)	0.015(5)	-0.004(5)	0.003(4)
C57	0.098 (7)	0.060 (6)	0.072(0)	0.005 (6)	-0.005 (6)	-0.003(-)
001	0.070 (7)	0.000 (0)	0.071(0)	0.020 (0)	0.000 (0)	0.000 (3)

C58	0.107 (8)	0.083 (7)	0.064 (6)	0.024 (7)	0.005 (5)	-0.012 (5)
C59	0.091 (7)	0.073 (7)	0.066 (5)	0.010 (6)	0.012 (5)	0.015 (5)
C60	0.075 (6)	0.059 (5)	0.064 (5)	0.008 (5)	-0.003 (4)	0.006 (5)
C61	0.074 (6)	0.056 (6)	0.093 (5)	-0.003 (5)	-0.002 (6)	-0.004 (6)
C62	0.081 (6)	0.058 (7)	0.092 (5)	-0.011 (5)	-0.021 (5)	-0.006 (5)
C63	0.075 (5)	0.048 (7)	0.080 (6)	0.006 (5)	-0.020 (4)	-0.001 (5)
C64	0.086 (7)	0.067 (8)	0.087 (7)	0.014 (6)	-0.033 (5)	-0.001 (6)
C65	0.105 (8)	0.072 (8)	0.071 (7)	0.039 (6)	-0.020 (6)	0.008 (6)
C66	0.096 (7)	0.056 (8)	0.069 (5)	0.036 (6)	-0.004 (6)	0.017 (5)
C67	0.086 (6)	0.040 (7)	0.071 (6)	0.021 (5)	-0.006 (5)	0.019 (5)
C68	0.075 (4)	0.043 (8)	0.065 (5)	0.009 (5)	-0.019 (4)	0.013 (5)
C55A	0.067 (5)	0.059 (5)	0.061 (5)	0.005 (4)	-0.003 (3)	0.002 (4)
C56A	0.074 (9)	0.047 (9)	0.056 (8)	0.008 (8)	-0.016 (7)	0.017 (7)
C57A	0.094 (9)	0.060 (9)	0.076 (9)	0.011 (9)	-0.016 (9)	-0.007(7)
C58A	0.101 (10)	0.078 (10)	0.072 (9)	0.023 (9)	-0.007 (8)	-0.004 (8)
C59A	0.093 (8)	0.068 (8)	0.073 (7)	0.012 (8)	0.010 (6)	0.003 (7)
C60A	0.076 (7)	0.055 (7)	0.070 (7)	0.002 (7)	0.005 (5)	0.008 (6)
C61A	0.066 (7)	0.056 (9)	0.086 (6)	0.010 (8)	0.003 (7)	0.008 (8)
C62A	0.076 (7)	0.052 (10)	0.089 (7)	0.001 (8)	-0.012 (6)	0.006 (8)
C63A	0.079 (6)	0.051 (9)	0.078 (6)	0.007 (7)	-0.016 (5)	0.002 (7)
C64A	0.085 (8)	0.061 (10)	0.077 (8)	0.022 (8)	-0.018 (6)	-0.003 (8)
C65A	0.092 (10)	0.057 (10)	0.072 (8)	0.037 (9)	-0.017 (7)	0.012 (8)
C66A	0.085 (9)	0.045 (11)	0.070 (8)	0.035 (9)	-0.009 (8)	0.012 (8)
C67A	0.080 (7)	0.046 (11)	0.066 (8)	0.020 (8)	-0.008 (6)	0.013 (8)
C68A	0.077 (6)	0.033 (9)	0.069 (7)	0.009 (8)	-0.012 (5)	0.001 (7)
C2S	0.121 (11)	0.148 (13)	0.155 (15)	-0.028 (10)	-0.036 (10)	0.019 (11)
Cl6	0.224 (11)	0.248 (18)	0.143 (8)	-0.111 (13)	-0.047 (8)	0.046 (10)
Cl7	0.149 (8)	0.182 (15)	0.214 (17)	0.004 (7)	-0.039 (8)	0.025 (12)
C18	0.209 (11)	0.131 (8)	0.173 (9)	-0.040 (8)	-0.092 (9)	0.023 (8)
Cl6A	0.26 (2)	0.179 (19)	0.203 (18)	-0.047 (15)	-0.004 (17)	0.037 (15)
Cl7A	0.153 (12)	0.20 (2)	0.155 (12)	0.029 (11)	-0.047 (9)	-0.031 (13)
Cl8A	0.27 (2)	0.138 (12)	0.171 (14)	-0.101 (14)	-0.104 (15)	0.046 (11)

Geometric parameters (Å, °)

Pd1—P2	2.232 (2)	C40—C41	1.35 (2)
Pd1—P1	2.232 (2)	C40—H40	0.9300
Pd1—Cl2	2.334 (2)	C41—C42	1.36 (2)
Pd1—Cl1	2.343 (2)	C41—H41	0.9300
P2—O4	1.615 (6)	C42—C43	1.457 (19)
Р2—О3	1.617 (6)	C42—H42	0.9300
P2—N2	1.625 (7)	C43—C44	1.426 (16)
P1—O2	1.601 (5)	C44—C45	1.483 (16)
P1—O1	1.608 (6)	C45—C46	1.385 (15)
P1—N1	1.630 (6)	C45—C54	1.473 (15)
O1—C1	1.387 (11)	C46—C47	1.397 (15)
O2—C12	1.397 (9)	C47—C48	1.398 (16)
O4—C46	1.434 (10)	C47—H47	0.9300
N1—C34	1.448 (11)	C48—C49	1.42 (2)

N1—C21	1.463 (10)	C48—H48	0.9300
O3—C35	1.396 (11)	C49—C54	1.391 (19)
N2—C68A	1.38 (3)	C49—C50	1.45 (2)
N2—C55A	1.441 (19)	C50—C51	1.38 (3)
N2—C68	1.481 (13)	С50—Н50	0.9300
N2—C55	1.487 (10)	C51—C52	1.31 (2)
C1—C10	1.361 (12)	C51—H51	0.9300
C1—C2	1.432 (11)	C52—C53	1.32 (2)
С2—С3	1.334 (14)	С52—Н52	0.9300
C2—H2A	0.9300	C53—C54	1.428 (19)
C3—C4	1.397 (15)	С53—Н53	0.9300
С3—Н3	0.9300	C55—C56	1.3900
C4—C5	1.379 (16)	C55—C60	1.3900
C4—C9	1.450 (12)	C56—C57	1.3900
C5—C6	1.35 (2)	С56—Н56	0.9300
С5—Н5	0.9300	C57—C58	1.3900
C6—C7	1.50(2)	С57—Н57	0.9300
С6—Н6	0.9300	C58—C59	1.3900
С7—С8	1.335 (14)	С58—Н58	0.9300
С7—Н7	0.9300	C59—C60	1.3900
С8—С9	1.428 (15)	С59—Н59	0.9300
С8—Н8	0.9300	C60—C61	1.564 (18)
C9—C10	1.466 (12)	C61—C62	1.24 (3)
C10—C11	1.467 (10)	С61—Н61	0.9300
C11—C12	1.411 (11)	C62—C63	1.44 (2)
C11—C20	1.444 (11)	С62—Н62	0.9300
C12—C13	1.414 (10)	C63—C64	1.3900
C13—C14	1.352 (13)	C63—C68	1.3900
С13—Н13	0.9300	C64—C65	1.3900
C14—C15	1.428 (13)	С64—Н64	0.9300
C14—H14	0.9300	C65—C66	1.3900
C15—C20	1.415 (11)	С65—Н65	0.9300
C15—C16	1.431 (13)	C66—C67	1.3900
C16—C17	1.348 (16)	С66—Н66	0.9300
C16—H16	0.9300	C67—C68	1.3900
C17—C18	1.380 (16)	С67—Н67	0.9300
С17—Н17	0.9300	C55A—C56A	1.3900
C18—C19	1.350 (14)	C55A—C60A	1.3900
C18—H18	0.9300	C56A—C57A	1.3900
C19—C20	1.413 (13)	С56А—Н56А	0.9300
С19—Н19	0.9300	C57A—C58A	1.3900
C21—C22	1.361 (13)	С57А—Н57А	0.9300
C21—C26	1.415 (14)	C58A—C59A	1.3900
C22—C23	1.424 (16)	C58A—H58A	0.9300
C22—H22	0.9300	C59A—C60A	1.3900
C23—C24	1.46 (2)	С59А—Н59А	0.9300
С23—Н23	0.9300	C60A—C61A	1.47 (4)
C24—C25	1.26 (2)	C61A—C62A	1.51 (5)
C24—H24	0.9300	C61A—H61A	0.9300

C25—C26	1.383 (16)	C62A—C63A	1.501 (5)
C25—H25	0.9300	С62А—Н62А	0.9300
C26—C27	1.512 (19)	C63A—C64A	1.3900
C27—C28	1.298 (17)	C63A—C68A	1.3900
С27—Н27	0.9300	C64A—C65A	1.3900
C28—C29	1.445 (16)	C64A—H64A	0.9300
C28—H28	0.9300	C65A—C66A	1.3900
C29—C34	1.408 (13)	С65А—Н65А	0.9300
C29—C30	1.409 (16)	C66A—C67A	1.3900
C30—C31	1.375 (19)	С66А—Н66А	0.9300
С30—Н30	0.9300	C67A—C68A	1.3900
C31—C32	1.354 (18)	С67А—Н67А	0.9300
C31—H31	0.9300	C2S—C17	1.734 (8)
C32—C33	1.381 (14)	C2S—C18	1.737 (8)
С32—Н32	0.9300	C2S—Cl6	1.740 (8)
C33—C34	1.365 (12)	C2S—Cl7A	1.751 (8)
С33—Н33	0.9300	C2S—Cl8A	1.755 (8)
C35—C44	1.379 (14)	C2S—Cl6A	1.756 (8)
C35—C36	1.381 (15)	C2S—H2S	0.9800
C36—C37	1.355 (17)	C3S—C111	1.736 (8)
С36—Н36	0.9300	C3S—C19	1.741 (8)
C37—C38	1.46 (2)	C3S—C110	1.746 (8)
С37—Н37	0.9300	C3S—H3SA	0.9800
C38—C43	1.37 (2)	C1S—Cl4	1.748 (8)
C38—C39	1.44 (2)	C1S—C15	1.751 (8)
C39—C40	1.35 (2)	C1S—C13	1.755 (8)
С39—Н39	0.9300	C1S—H1S	0.9800
P2—Pd1—P1	94.59 (7)	C39—C40—H40	120.1
P2—Pd1—Cl2	174.48 (10)	C40—C41—C42	122.7 (16)
P1—Pd1—Cl2	88.86 (8)	C40—C41—H41	118.7
P2—Pd1—Cl1	87.73 (8)	C42—C41—H41	118.7
P1—Pd1—Cl1	174.22 (10)	C41—C42—C43	120.3 (16)
Cl2—Pd1—Cl1	89.24 (9)	C41—C42—H42	119.8
O4—P2—O3	101.0 (3)	C43—C42—H42	119.8
O4—P2—N2	111.8 (3)	C38—C43—C44	119.0 (12)
O3—P2—N2	100.0 (3)	C38—C43—C42	115.2 (13)
O4—P2—Pd1	110.5 (2)	C44—C43—C42	125.7 (14)
O3—P2—Pd1	116.4 (2)	C35—C44—C43	118.5 (11)
N2—P2—Pd1	115.9 (3)	C35—C44—C45	120.2 (9)
O2—P1—O1	102.0 (3)	C43—C44—C45	121.2 (10)
O2—P1—N1	113.3 (3)	C46—C45—C54	114.9 (11)
O1—P1—N1	99.0 (3)	C46—C45—C44	121.5 (9)
O2—P1—Pd1	108.2 (2)	C54—C45—C44	123.6 (11)
O1—P1—Pd1	117.5 (2)	C45—C46—C47	126.1 (9)
N1—P1—Pd1	116.1 (2)	C45—C46—O4	118.8 (9)
C1—O1—P1	123.4 (5)	C47—C46—O4	115.0 (9)
C12—O2—P1	122.8 (4)	C48—C47—C46	117.1 (12)
C46—O4—P2	120.9 (5)	C48—C47—H47	121.4
C34—N1—C21	115.7 (6)	С46—С47—Н47	121.4

C34—N1—P1	123.3 (5)	C47—C48—C49	120.1 (12)
C21—N1—P1	120.9 (6)	C47—C48—H48	119.9
C35—O3—P2	120.4 (5)	C49—C48—H48	119.9
C68A—N2—C55A	126 (2)	C54—C49—C48	121.2 (11)
C55A—N2—C68	119.5 (15)	C54—C49—C50	118.5 (15)
C68A—N2—C55	115 (2)	C48—C49—C50	120.3 (14)
C68—N2—C55	109.3 (10)	C51—C50—C49	112.2 (17)
C68A—N2—P2	121 (2)	С51—С50—Н50	123.9
C55A—N2—P2	113.0 (11)	С49—С50—Н50	123.9
C68—N2—P2	126.5 (10)	C52—C51—C50	132 (2)
C55—N2—P2	124.0 (6)	С52—С51—Н51	114.1
C10-C1-O1	120.3 (7)	С50—С51—Н51	114.1
C10-C1-C2	122.7 (8)	C51—C52—C53	115.5 (19)
O1—C1—C2	116.8 (8)	С51—С52—Н52	122.2
C3—C2—C1	118.6 (10)	С53—С52—Н52	122.2
C3—C2—H2A	120.7	C52—C53—C54	121.7 (17)
C1—C2—H2A	120.7	С52—С53—Н53	119.2
C2—C3—C4	123.2 (9)	С54—С53—Н53	119.2
С2—С3—Н3	118.4	C49—C54—C53	120.4 (11)
С4—С3—Н3	118.4	C49—C54—C45	119.7 (12)
C5—C4—C3	120.5 (10)	C53—C54—C45	119.8 (13)
C5—C4—C9	120.3 (11)	C56—C55—C60	120.0
C3—C4—C9	118.9 (8)	C56—C55—N2	116.6 (6)
C6—C5—C4	119.8 (11)	C60—C55—N2	123.2 (6)
С6—С5—Н5	120.1	C55—C56—C57	120.0
С4—С5—Н5	120.1	С55—С56—Н56	120.0
C5—C6—C7	121.6 (12)	С57—С56—Н56	120.0
С5—С6—Н6	119.2	C58—C57—C56	120.0
С7—С6—Н6	119.2	С58—С57—Н57	120.0
C8—C7—C6	117.8 (13)	С56—С57—Н57	120.0
С8—С7—Н7	121.1	C57—C58—C59	120.0
С6—С7—Н7	121.1	С57—С58—Н58	120.0
С7—С8—С9	121.5 (11)	С59—С58—Н58	120.0
С7—С8—Н8	119.3	C58—C59—C60	120.0
С9—С8—Н8	119.3	С58—С59—Н59	120.0
C8—C9—C4	118.8 (8)	С60—С59—Н59	120.0
C8—C9—C10	123.6 (8)	C59—C60—C55	120.0
C4—C9—C10	117.6 (8)	C59—C60—C61	122.1 (8)
C1—C10—C9	118.1 (7)	C55—C60—C61	117.8 (8)
C1—C10—C11	122.1 (7)	C62—C61—C60	130.9 (15)
C9—C10—C11	119.6 (7)	С62—С61—Н61	114.6
C12—C11—C20	116.5 (7)	С60—С61—Н61	114.6
C12-C11-C10	120.0 (7)	C61—C62—C63	123.6 (16)
C20-C11-C10	123.5 (7)	С61—С62—Н62	118.2
O2—C12—C11	120.6 (6)	С63—С62—Н62	118.2
O2—C12—C13	117.5 (7)	C64—C63—C68	120.0
C11—C12—C13	121.8 (7)	C64—C63—C62	113.0 (14)
C14—C13—C12	119.3 (8)	C68—C63—C62	126.9 (14)
C14—C13—H13	120.4	C63—C64—C65	120.0

C12—C13—H13	120.4	С63—С64—Н64	120.0
C13—C14—C15	122.8 (8)	С65—С64—Н64	120.0
C13—C14—H14	118.6	C64—C65—C66	120.0
C15—C14—H14	118.6	С64—С65—Н65	120.0
C20-C15-C14	117.3 (7)	С66—С65—Н65	120.0
C20-C15-C16	119.9 (9)	C65—C66—C67	120.0
C14—C15—C16	122.6 (8)	С65—С66—Н66	120.0
C17—C16—C15	121.2 (9)	С67—С66—Н66	120.0
С17—С16—Н16	119.4	C68—C67—C66	120.0
C15—C16—H16	119.4	С68—С67—Н67	120.0
C16—C17—C18	118.2 (9)	С66—С67—Н67	120.0
С16—С17—Н17	120.9	C67—C68—C63	120.0
С18—С17—Н17	120.9	C67—C68—N2	120.5 (12)
C19—C18—C17	123.0 (11)	C63—C68—N2	119.4 (12)
C19—C18—H18	118.5	C56A—C55A—C60A	120.0
C17—C18—H18	118.5	C56A—C55A—N2	126.3 (14)
C18—C19—C20	121.3 (10)	C60A—C55A—N2	113.6 (14)
C18—C19—H19	119.3	C57A—C56A—C55A	120.0
С20—С19—Н19	119.3	С57А—С56А—Н56А	120.0
C19—C20—C15	116.2 (8)	С55А—С56А—Н56А	120.0
C19—C20—C11	122.4 (8)	C56A—C57A—C58A	120.0
C15—C20—C11	121.4 (8)	С56А—С57А—Н57А	120.0
C22—C21—C26	121.6 (9)	С58А—С57А—Н57А	120.0
C22—C21—N1	120.5 (8)	C59A—C58A—C57A	120.0
C26—C21—N1	117.8 (9)	C59A—C58A—H58A	120.0
C21—C22—C23	118.8 (11)	C57A—C58A—H58A	120.0
C21—C22—H22	120.6	C60A—C59A—C58A	120.0
С23—С22—Н22	120.6	С60А—С59А—Н59А	120.0
C22—C23—C24	116.0 (12)	С58А—С59А—Н59А	120.0
С22—С23—Н23	122.0	C59A—C60A—C55A	120.0
С24—С23—Н23	122.0	C59A—C60A—C61A	115 (2)
C25—C24—C23	121.4 (12)	C55A—C60A—C61A	123 (2)
C25—C24—H24	119.3	C60A—C61A—C62A	121 (3)
C23—C24—H24	119.3	C60A—C61A—H61A	119.3
C24—C25—C26	123.8 (14)	C62A—C61A—H61A	119.3
C24—C25—H25	118.1	C63A—C62A—H62A	109.0
C26—C25—H25	118.1	C61A—C62A—H62A	109.0
C25—C26—C21	116.5 (13)	C64A—C63A—C68A	120.0
C25—C26—C27	121.4 (11)	C64A—C63A—C62A	130 (3)
C21—C26—C27	122.1 (9)	C68A—C63A—C62A	106 (3)
C28—C27—C26	127.1 (10)	C65A—C64A—C63A	120.0
С28—С27—Н27	116.4	C65A—C64A—H64A	120.0
С26—С27—Н27	116.5	C63A—C64A—H64A	120.0
C27—C28—C29	126.9 (11)	C64A—C65A—C66A	120.0
С27—С28—Н28	116.5	C64A—C65A—H65A	120.0
С29—С28—Н28	116.5	С66А—С65А—Н65А	120.0
C34—C29—C30	117.8 (10)	C67A—C66A—C65A	120.0
C34—C29—C28	123.7 (9)	С67А—С66А—Н66А	120.0
C30—C29—C28	118.4 (10)	С65А—С66А—Н66А	120.0

C31—C30—C29	120.2 (11)	C68A—C67A—C66A	120.0
С31—С30—Н30	119.9	С68А—С67А—Н67А	120.0
С29—С30—Н30	119.9	С66А—С67А—Н67А	120.0
C32—C31—C30	121.3 (12)	N2—C68A—C67A	113 (3)
С32—С31—Н31	119.3	N2—C68A—C63A	127 (3)
C30—C31—H31	119.3	C67A—C68A—C63A	120.0
C31—C32—C33	119.3 (11)	Cl7—C2S—Cl8	110.4 (6)
С31—С32—Н32	120.4	Cl7—C2S—Cl6	110.0 (6)
С33—С32—Н32	120.4	Cl8—C2S—Cl6	110.3 (5)
C34—C33—C32	121.5 (9)	Cl6—C2S—Cl7A	107.7 (16)
С34—С33—Н33	119.2	Cl7A—C2S—Cl8A	108.6 (6)
С32—С33—Н33	119.2	Cl7—C2S—Cl6A	102.5 (18)
C33—C34—C29	119.8 (9)	Cl7A—C2S—Cl6A	108.4 (6)
C33—C34—N1	121.0 (8)	Cl8A—C2S—Cl6A	108.4 (6)
C29—C34—N1	119.1 (7)	Cl7—C2S—H2S	108.7
C44—C35—C36	123.3 (10)	Cl8—C2S—H2S	108.7
C44—C35—O3	117.6 (9)	Cl6—C2S—H2S	108.7
C36—C35—O3	118.9 (9)	Cl7A—C2S—H2S	91.7
C37—C36—C35	118.5 (11)	Cl8A—C2S—H2S	106.4
С37—С36—Н36	120.7	Cl6A—C2S—H2S	131.0
С35—С36—Н36	120.7	Cl11—C3S—C19	99.1 (12)
C36—C37—C38	120.3 (12)	Cl11—C3S—Cl10	108.3 (13)
С36—С37—Н37	119.9	Cl9—C3S—Cl10	111.3 (14)
С38—С37—Н37	119.9	Cl11—C3S—H3SA	112.4
C43—C38—C39	122.3 (16)	Cl9—C3S—H3SA	112.4
C43—C38—C37	119.9 (11)	Cl10—C3S—H3SA	112.4
C39—C38—C37	117.8 (16)	Cl4—C18—Cl5	108.8 (6)
C40—C39—C38	119.5 (18)	Cl4—C1S—Cl3	108.5 (6)
С40—С39—Н39	120.3	Cl5—C18—Cl3	108.7 (6)
С38—С39—Н39	120.3	Cl4—C1S—H1S	110.3
C41—C40—C39	119.9 (17)	Cl5—C1S—H1S	110.3
C41—C40—H40	120.1	Cl3—C1S—H1S	110.3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2S—H2S···Cl1 ⁱ	0.97	2.47	3.358 (10)	151
C27—H27···Cl2 ⁱⁱ	0.93	2.82	3.741 (12)	172
C14—H14···Cl2 ⁱⁱ	0.93	2.84	3.613 (10)	142
$Q_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	1 + 1 / 4			

Symmetry codes: (i) -y+1, x, z-3/4; (ii) -y+1, x, z+1/4.

Fig. 1

Fig. 2

